The Biosphere 2: An Ecological Dress Rehearsal

As NASA committees and American presidents contemplated grand visions of extraterrestrial travel without much in the way of action, one of the most prominent attempts to simulate a Martian homestead was accomplished by a group pursuing extraterrestrial utopia. Rather than practicing colonization in a place on Earth that resembled Mars, this collective staged a dress rehearsal by crafting a tiny Earth on Earth. 

A collection of self-trained ecologists, architects, and artists toiled from 1987 to 1991 to build the enormous, closed-system greenhouse that came to be known as the Biosphere 2—Biosphere 1 being planet Earth.

vWikipedia

Biosphere 2 in 1998 near Tucson, AZ.

In its early years, the facility operated outside the auspices of NASA, the military, or even an established research institution. Unlike the BIOS researchers, Biosphere 2 did not benefit from state money. In the middle of the Arizona desert, a private patron funded an effort by concerned, eco-minded citizens to test whether Earth in microcosm could survive in a place like Mars.

The designers of Biosphere 2 presented it as many things—an ecological laboratory, an organic lifeboat, and a prototype for an extraterrestrial analog habitat. Oil heir Edward Bass provided some $150 million to the group of performance artists and self-trained ecologists based at the Synergia Ranch in New Mexico to build and operate the facility.

Publicity materials represented the ambitious project as a test run for recreating small Earths—either on places like Mars or on Earth itself to act as a self-sustaining lifeboat in the event of ecological collapse. The primary goal: to enclose humans inside the small Earth and determine whether such a system could sustain life over long periods of time.

Wikipedia

The Savanna (foreground) and Ocean (background) of Biosphere 2 in 2003 (left). The living quarters for the inhabitants of Biosphere 2 (middle). The Coastal Fog Desert section of Biosphere 2 in 2005 (right).

The Biosphere 2 designers traveled far and wide to study and construct the ecosystems included in the greenhouse. Synergia participants even transported coral reef organisms from the Caribbean to the Biosphere 2 ocean—a remarkable feat given the fragility of such organisms and their inability to thrive in captivity.

By the time the facility was pronounced ready for the first fully closed, self-sustaining “mission,” some 3,800 different species populated seven biomes, representing the ocean, a rainforest, a wetlands, a savannah, a fog desert, an agricultural area, and a human habitat.

In September 1991, a crew of eight “biospherians” wearing dark blue flight suits paraded past cheering crowds before walking through the airlock of the facility. With the exception of a medical emergency requiring the brief exit and return of one crew member, they would not emerge for two years.

Much like real astronauts, the biospherians and the project as a whole were subjected to close scrutiny by those on the outside—in some cases quite literally, as visitors were encouraged to observe through the glass as those inside tended their small experimental planet.

Flickr, Wikipedia

The airlock of Biosphere 2 (left). An area for cultivating crops in Biosphere 2 in 1998 (right).

Over the course of the two-year mission, the Biosphere 2 suffered from the same kind of major extinction event that some predict will happen on Earth, thus necessitating Mars colonization. The facility had been deliberately “species-stuffed” with the expectation that at least some extinctions would occur. After two years, some 40 percent of species died off, ranging from vertebrate species like exotic galagos to corals to ordinary bees.

Shortly after the fanfare of the closure ceremony faded, the bees were found clustered by the emergency exit, dead. The cheaper glass used to build the majority of the greenhouse filtered out the ultraviolet light that bees require to navigate. Blinded by a deficiency invisible to human eyes, the insects made their way to the UV light admitted by the thinner exit glass and expired there.

When bees went extinct, the Biosphere 2 lost key pollinators. Its human attendants had to compensate for the loss with their own labor. While they subsisted on perhaps the most organic diet imaginable, the biospherians suffered from a shortage of calories, insufficient oxygen, and exhaustion.

Wikipedia
The 1996 comedy, Bio-Dome, depicts two dim-witted slackers who accidently trap themselves in a Biosphere 2-like dome.

The microbe-packed agricultural soil provided abundant nutrients for crops, but also respired precious oxygen needed to keep other aerobic organisms—including the biospherians—alive. Plants that efficiently absorb carbon, like sweet potatoes, thrived in the carbon dioxide-rich environment and became diet staples, turning the biospherians’ skin orange.

Eventually, following outside administrators’ concern for the safety of those inside, fresh oxygen was added to the previously closed system. The press lampooned the project as a failure.

As an ecological experiment and a planetary analog habitat, the experiment perhaps did not deserve the scorn heaped upon it. The project may have suffered most by being ahead of its time.

More than 20 years later, the culturally acceptable pathways for large-scale research have changed. In the early 1990s, a group of independent generalists without PhDs from well-regarded research institutions seemed to be “playing scientist” inside a structure that resembled a kind of new-age ziggurat, an endeavor at odds with norms of Cold War science. However, in the current gilded age in which wealthy individuals start and operate private aerospace companies—an industry previously the sole domain of large industrial states—such a project might seem perfectly legitimate.

Regardless of its reputation, the experiment provided a slate of valuable lessons for both future Mars missions and for ecosystems management on Earth. The agricultural hardships caused by bee extinction in Biosphere 2 foreshadowed widespread colony collapse disorder a decade later.

A recent study revealed that sweet potatoes grow exponentially larger in carbon dioxide saturated environments, suggesting they could be the food of the future as climate change intensifies.

Even the fraught social dynamics during the first mission provided rich fodder for planning interplanetary missions. By the end of the two years, the eight biospherians had divided into two factions that sparred over bananas, refused to speak at times, and even came to physical blows. The psychological aspects of Mars missions has since been the focus of multiple planetary analog experiments.

Flickr, Air Force

The Ocean area of Biosphere 2 in 2014 (left). Now a popular tourist attraction as well as research station, the Biosphere 2 facility offers regular tours (right).

During the first crew enclosure, a group of Yale forestry researchers defended the Biosphere 2 project against public ridicule, calling it “more than an experiment … it is a metaphor for the planet and our inhabitation of it.” Regardless of the reasons for its representation as a failure, the challenges of the first Biosphere 2 mission provided prescient analogs for Biosphere 1.

It also demonstrated the multilayered complexity of replicating an entire planet in microcosm, whether on Earth or elsewhere—including the less savory realities of maintaining a world built from scratch. Perhaps the most compelling conclusion: Our finely tuned, perfectly positioned, dynamic Planet Earth isn’t so easy for humans to replicate.

Current Analogs and Future Visions

The Biosphere 2 had been intended from the beginning as a for-profit endeavor, with income generated by tourism and patents—though only one major patent came of the project. Since then, nonprofits and state funded programs have taken up similar challenges in building planetary analog habitats.

A group from Fairbanks, Alaska called the International Space Exploration and Colonization Co. has slowly pursued construction of a closed ecological system like the Biosphere 2 called Mars Base 0. In the early 2000s, NASA started its own program of self-sustaining closed ecosystems called the BIOPlex, but funding dried up before construction began in earnest.

In 2014 a Chinese university-run project called Yuegong-1, or “Lunar Palace 1,” began its first Biosphere 2-type mission in which a crew of three spent 105 days inside a closed ecosystem, subsisting on grains, vegetables, and mealworms.

Wikipedia

The Flashline Mars Arctic Research Station crew practice surveying with low frequency electromagnetic equipment on Devon Island in Canada in 2009 (left). The Flashline Mars Arctic Research Station with two crew members, the habitat, and rover in 2009 (right). NASA and researchers from the Mars Institute and SETI Institute conducting field tests in the Mojave Desert in 2011 (bottom).

For the most part, current planetary analogs with human inhabitants tend to operate small, spaceship-like habitats in natural places that resemble alien landscapes.

NASA has partnered with the nonprofit Mars Institute to run a yearly analog mission in a crater on the uninhabited Devon Island in the Canadian Arctic, and the nonprofit Mars Society owns and operates a Mars Desert Research Station (MDRS) in southern Utah. The University of Hawaii at Manoa operates the Hawai’i Space Exploration Analog and Simulation (HI-SEAS), in which crews of researchers conduct simulated missions in the Mars-like terrain of Mauna Loa.

The Chinese space program recently announced plans to build a “Mars village” in the Hongya (Red Cliff) region of Haixi Mongolian and Tibetan Autonomous Prefecture in north-west China. The site will host astronauts in training as well as tourists interested in experiencing all the adventure of Mars without the price tag, risk, and time investment of interplanetary travel.

Wikipedia

Between 2007 and 2011, Russia, the European Space Agency, and China conducted a psychosocial isolation experiment—the Mars-500 mission—in preparation for an unspecified future trip to Mars. Three different crews lived and worked in a mock-spacecraft to simulate a 520-day mission. 

Other programs focus less on making Earth physically like Mars and more on replicating the social challenges of long missions.

The Russian-helmed MARS-500 installation encloses crews for long periods of time in order to test the psychological effects of long-term isolation. The NASA Extreme Environment Mission Operations (NEEMO) program confines crews, including seasoned astronauts like Peggy Whitson, Chris Hadfield, and Luca Parmitano, to an underwater habitat nine miles off the coast of Key Largo.

Nearly all these simulations designate requirements like wearing a space suit upon leaving the habitat, and enforcing time delays in communication with those outside the habitat to mimic the time it will take for signals to reach Earth on a real Mars mission.

Some missions yield experiments aimed towards normalizing the idea of life on other planets. A recent MDRS experiment sought to determine whether beer can be brewed on Mars (it can).

NASA, Wikipedia

Crew members performing opperations outside the NASA Extreme Environment Mission Operations (NEEMO) underwater laboratory (left). Crew members of NEEMO pose inside and outside their underwater habitat (right). 

Beer might make Mars a more fun place to be, but what happens to beer on the other side of its consumption remains a thorny problem. With occasional exceptions, few of these proposed and in-progress planetary analog habitats expend significant effort grappling with the material realities of energy consumption, resource use, waste management, and environmental impact on the surrounding area once we get to Mars.

Plans put forth by Elon Musk and his ilk to transform the entire planet to resemble Earth suggest an even more daunting technical goal than creating small, life-sustaining cabins or greenhouses. Things could get messy quickly.

Increasingly, the reality of this messiness has gained attention alongside the orderly optimism of Mars boosters. Fiction of the past few years suggests that American culture may be coming to terms with the grittier side of space futures.

The 2011 novel The Martian and its 2015 film adaptation portray a seemingly near future in which America has repeatedly landed people on Mars. However, as the main character quickly learns, staying on Mars long term requires plenty of unpleasant mundanities. Even with magical (fictional) technologies such as radiation-blocking canvas keeping him alive, the protagonist finds that survival on an alien world requires less innovating and more tinkering, revising, and—quite literally—shoveling shit.

Flickr

The poster for the 2015 film The Martian (left). The poster for the 2013 film Gravity (right).

In the 2013 film Gravity, humankind never even has a chance to reach Mars. A chain reaction of collisions destroys the entire satellite infrastructure within seconds, rendering low-Earth orbit an untraversable mess of speeding space junk. Although the main character survives through acts of luck and tinkering, the future from Gravity looks bleak—cut off from any potential escape routes to the rest of the cosmos, humanity must now live in the mess we’ve made on our planet.

If such a bleak future comes to pass, perhaps it would at least be an equitable one. Elon Musk’s proposed $200,000 price tag for a ticket to Mars still excludes the vast majority of humanity who cannot afford to get away should our planet cease to be able to support us.

If only the rich and well-connected make their way to Mars, what will that society look like? What parts of humanity, and of Earth, will be preserved and recreated in the new world, and at what cost to Mars? And what will happen to those left behind on a crowding, heating planet Earth?


Read more about the story of space exploration: The Soviets launch SputnikMariner 9, the Moon Landing, and  Space Flight.